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Animated graphics can provide a basis for discussion of calculus concepts. This paper
reports analysis of the responses from nineteen undergraduate mathematics students who
were asked to write a work sheet based on a simple animation linking the graph of a
function with its gradient function. Their responses were benchmarked against those of
experienced teachers. This open assessment task provided valuable insights into students’
perceptions of important aspects of both the applet and the derivative concept.

Computer animations are now an expected part of online or CD-ROM based teaching
materials. As mathematics teachers, we may enjoy exploring these illustrations and admire
the creativity of the author in providing an innovative representation that emphasises key
features of a familiar concept. Do our students, who may have gaps in conceptual
understanding, notice the range of features evident to the experienced teacher? Students’
responses to such interactive graphics may suggest areas of their conceptual understanding
that need further attention in teaching.

This paper reports the results of an exercise, completed by three mathematics staff and
nineteen students, which required them to write material focused on an interactive
graphical animation (a simple JAVA applet) called surfing derivatives shown in figure 1.
The aim of this exercise was to force students to clarify and refine their own ideas about
functions and their derivatives, in order to put them into words. The students’ responses to
this illustration give insight into their schema for understanding derivatives.

Background

Many authors have commented positively on the place of multimedia and computer
animations in the teaching of calculus concepts. For recent examples see Abu, Hassan and
Sahib (2001), Klotz (2002), or Giraldo (2002). In particular, Malabar and Poutney (2002)
commented that working with computer visualisation assisted the construction of
mathematical understanding through provision of new and vivid experiences. The activities
used in their study prompted students to verbalise their understandings of the concepts
displayed. This invoked higher order thinking in the forms that Bloom (1956) termed
focusing on information transfer, interpreting, implications and evaluation. In teaching and
assessing mathematics is it relatively common to set exercises that require recall and the
use of practiced routines, but it is harder to create tasks which require students to discuss or
write about their understanding. Interactive applets may be a springboard for such tasks.

Evidence that interactive animations can be used as a stimulus to promote higher order
thinking suggests that they could have a valuable place as a focus for diagnostic or
assessment tasks as well as in teaching activities. However few studies report the use of
multimedia animations in assessing students’ conceptual understandings. In one such
study, Hare (1997) videotaped and analysed the conversations of students working
collaboratively in an interactive environment. In order to verbalise their understanding,
students were forced to clarify their own ideas. This revealed weaknesses in students’
conceptual understandings of calculus, compounded by their incorrect use of language.



This approach, while useful in research, is not practical as a regular classroom practice.
Thus in the study reported in the present paper, a logistically simpler exercise, featuring an
interactive graphical animation, was trialed. Students were required to verbalise their
understanding through a written task that aimed to explore their conceptual understanding
of differentiation.

This Study

 This study was planned to give some insights into the individual nature of user
responses triggered by the experience of exploring a simple computer animation. For this
purpose an exercise was set which required each participant to write material based on
their individual understanding of derivatives and their response to a particular interactive
animated illustration. The resulting scripts were analysed.

Participants and Task

 The exercise discussed in this paper was completed by nineteen undergraduate students
who were studying an introductory course on functions and calculus, and also by three
tertiary mathematics teachers who were not currently teaching this group of students. The
task formed part of an assessed assignment for the students. This work was due for
submission at the end of week ten of a thirteen-week lecture and tutorial series. The
students had met the concept of derivatives in their secondary school mathematics and had
spent some weeks studying differentiation and integration in this course, which took a
multi-representational approach to functions and calculus, with the support of CAS
calculators.

The participants were directed to the URL for the surfing derivative animation, shown
in Figure 1. This applet was chosen because it was simple and appealing, it linked closely
to graphical work done in the course, and it illustrated a foundational concept.

The participants were asked to write a guide for this illustration. The guide was to be in
the form a worksheet suitable for someone who was new to calculus. The directions went
on to say that this guide should explain the concept and how the applet illustrated this, tell
the novice calculus student what to look for and suggest options for exploring the concept.
The instructions also said that the worksheet should include questions that test
understanding. Part two of the set task required participants to provide answers to these
questions.

A worksheet was chosen as the context for the students’ writing because most of
students in this group were pre-service teachers. Although the task was deliberately very
open, a sample worksheet, suitable for use with an interactive animation illustrating the
sum of an arithmetic progression, was provided as an example of suitable length, depth of
analysis and style.

The Animation

The interactive animation surfing derivatives is set entirely within the graphical
representation of a function and its derivative. The graph of a function is shown and a red
dot represents a point on this curve. A short line segment through this dot is used to
represent the tangent to the curve at that point. The user may drag the red point and hence
view the slope of the tangent line at any point along the curve. A triangle of base one is
subtended from the tangent line so that the height of that triangle corresponds to the
gradient or derivative of the curve at each point. Clicking on the Trace button activates the



lower section on the applet. Here the gradient of the initial function, at many points, is
plotted around a horizontal axis as the user drags the red point along the curve. This builds
an image of the gradient function. One option provided by this applet is a Man button.
When this is clicked on, a diagrammatic man is shown standing on the line segment of the
tangent. He is referred to as a surfer, the curve as a wave and the line segment as the
surfboard.

 

 
Figure 1. Screen dump from surfing derivatives animation.

(http://www.ies.co.jp/math/java/calc/doukan/doukan.html, retrieved 24/03/03 )

The Analysis

The researchers’ intention was that interaction with the applet would act as a catalyst
encouraging students to articulate their understandings of the foundational concept of the
derivative as a rate of change. The responses of the experienced teachers were used to
provide a benchmark for evaluating the comprehensiveness and quality of the student
worksheets. The analysis of students work, discussed below, considered: use of the model,
understanding of the concept of slope of tangent as derivative at a point, use of appropriate
mathematical language, and the representational focus of questions set as either algebraic
or graphical.

Results and Discussion

In their various worksheets many features of the applet and the understanding of
derivative that it reinforces were addressed by both the teachers and the students. However
many students missed some possible features. Perhaps not surprisingly, only one student
and the experienced teachers invited criticism of the applet. We will now look at these
features in some detail.

Table 1, below, provides a summary of the features that the experienced teachers
addressed, along with a list of the students who also chose to include these features in their
worksheet guide for a novice student. A list of identification codes for the students who
chose to focus on algebra is also included. None of the three teachers took this approach.



Table 1
Features of the Applet or of Derivatives Addressed by Students in their Worksheets.

Teacher benchmark:
Features of worksheet

Students who incorporated this feature
in their worksheet

Mathematics:
Defined derivative graphically
(rate of change, slope, gradient)

1,2,3,7,8,9,11,12,13,14,16,17,18,19

Used conventional mathematical
language

2,4,5,6,7,8,9,10,11,12,13,15,16,17,19

Slope of tangent- derivative at a
point

3,4,11

Drew attention to sections of
positive, negative and zero
gradient for f(x)

2,3,4,5,6,7,11,13,14,15,17

Drew attention to maximum and
minimum values of f(x).

1,6,8,13,15

Linked key details of )(xf ′  to
key features of f(x)

1,8,12,13,17

Emphasised rate or change equals
rise over run.

2,3,14,15,19

Applet:

Indicated that surf board
represents tangent

4,5,7,9,11,14,16,17

Drew attention to details of
applet, eg, green line linking f(x)
with )(xf ′

3,4,8,9,12,15

Criticised the applet 14
Students only:

Focused on algebraic
representation of derivative.

5,6,7,11,14,16

Benchmark: The Teachers’ Responses

The teachers, whose work was used as a benchmark, each defined the notion of
derivative in terms of rate of change and linked this to the slope of a curve. They explained
that the slope of a curve at a point is the same as the slope of the line that is a tangent to the
curve at that point. The teachers pointed out that the surfboard represents the tangent, and
then examined the slope of the board at various points along the wave. They pointed out
the links between the function and the derivative curve, and vice versa, at features such as
maxima, minima, and sections of positive and negative slope.

Student Responses

It is interesting to note not so much what students included but the number of students
who did not include many possible key features of derivatives illustrated by this applet. For



example, eleven students noted when the gradient of the tangent, represented by the
surfboard, was positive, negative or zero but only five students explicitly drew attention to
maximum and minimum values. Only students 8, 13 and 15 referred to positive, negative
and zero gradients as well as maximum and minimum points.

While most students defined the derivative in terms of rate of change only three made
reference to rate of change at a single point. Most students did not explicitly draw attention
to the various features of the applet and the mathematics that they depicted. Only eight
students stated that the surfboard represented the tangent or gradient of the curve but all
except three invited the novice student to consider the slope of the board. Only six students
drew attention to the triangle and line linking the two curves and fewer pointed out the
triangle’s meaning in terms of calculating the derivative at a point in a graphical context.
Many referred to sections of positive, negative and zero gradients, but had difficulty
articulating this using standard mathematical language such as maximum or minimum.
Students 3 and 10’s questions and suggested answers reflect this difficulty.

Student 3: Drag the red point along the curve. What do you notice about the slope of the surfboard?

Answer: It moves up and down according to the wave.

Student 10:Why is the derivative function 0 when the surfer is on top of the wave?

Answer: This is because at the top of the wave the gradient is zero.

Student 17, on the other hand, was able to articulate a clear understanding of the image.
An excerpt from his worksheet, below, demonstrates this strength. Student 17 wrote:

Read the information given. What is the function f(x) represented by?

Answer: The curve of the wave.

Look at the position of the man and the board. What is the significance of the board? Explain.

Answer: The board is like a tangent line to the curve. The slope, or angle, of the board is relative to
the derivative of the function at that point.

Initially the board is flat, what does this mean about the derivative of f(x)?

Answer: The slope of the curve must be equal to zero. In terms of f(x) , this means that the function is
neither increasing or decreasing.

Click on the trace option and slowly drag the red dot across the wave. What does the trace represent?

Answer: The derivative of f(x)

Drag the surfer to the top of the first crest. Predict what will happen and why to the trace, as you move
the surfer past this crest.

Answer: The trace will become negative, because the derivative becomes negative, ie. The function is
decreasing with respect to x.

Limitations of the Applet

The teachers raised two criticisms of the applet. First, when the trace facility was
activated the slope of the curve at each point was transferred to the axes below the original
function. This built up a shaded curve representing the derivative function. The teachers
were concerned that illustrating the gradient function by a shaded curve may cause
confusion with Riemann sum techniques for finding area under a curve. There was no
evidence that these students found that aspect of the illustration confusing. Only one
student mentioned the build up of the shaded curve and the different images given for slow
and fast dragging, even though by the time the assignment was due in these students had



studied both anti-differentiation and area under curves. Student 13 pointed this out but did
not perceive any problem:

Drag the surfer across the waves quickly. What do you notice?

Answer: Only some of the derivative is drawn, it looks like a bar graph.

Now drag him slowly and describe what happens. Why do you think there is a difference between
the two speeds?

Answer: The graph is drawn continuously; therefore it is all coloured in. This gives an accurate
representation of the rate of change of the slope.

One teacher raised this second criticism:

I feel that the example of a surfboard has its problems in that no real life surfer would last long with
significant portions of the board under water. Also, surfers tend to have little success surfing up hill
as does this surfer.

No student made any comment on the suitability of the implied model but, in
unthinkingly accepting the image, many students refer to the surfer going up the waves and
some students produced tangled language. For example:

Student 6 wrote: Waves that have low curves are called minimums and waves that have high curves
can be called maximums.

Student 2 wrote: The surf board slopes up and down according to the wave’s ascent or
descent…When the surfboard slopes upwards from left to right this mean the wave’s rate of change
is positive (increasing). [No variables had been defined, Student 2 only stated that a derivative

)(xf ′ , is the rate of change of a given function f(x).]

One student, number 14, criticised both the lack of an algebraic definition for the
function and the lack of x- or y-coordinates marked on the graph, saying this made it very
difficult to calculate the gradient. This criticism illustrates her inability to deal with the
concept at a general rather than specific level.

A further limitation, possibly due to a decision to simplify the presentation, required an
extra level of understanding. By representing the slope of the tangent using a triangle with
base one unit, students could confuse the value of the derivative with the height of the
triangle, rather than the ratio of rise to run. For example, Student 9 wrote

The gradient of the surfboard is equal to the green line because this is the rise when run is equal to
one…What does the green line represent in both the applet and the diagram?

Answer: The green line represents the gradient of the tangent or surfboard.

Focus on the Algebraic Representation of Derivative

A particularly interesting feature of seven student’s work was their emphasis on the
algebraic, symbolic representation of derivative despite the graphical representation in this
exercise. It was clear that despite the graphical work, which had been undertaken in their
course of study, what they saw as the important message to convey about derivatives to a
novice student was the algebraic rule for the derivative of a polynomial. In a similar way to
students described by Pierce and Stacey (2002) as having a negative attitude towards the
use of Computer Algebra Systems, these students seem to place a greater value on
knowing the rule for a routine procedure than on visual representation and conceptual
understanding. Perhaps this had been their own point of entry to this area of mathematics at
school. Student 14, for example, started her worksheet this way:



The derivative function produces the slope (gradient) of the curve represented by y=f(x) at any
value of x. the derivative function is denoted by f’, and the process of finding the derivative is called
differentiation. To find the derivative of a function, you multiply down by the power and then
reduce the power by one.

This was followed by several algebraic examples before there was any reference at all to
the applet.

In his introduction Student 19 provides his novice student with:

Formula: f’(x)=lim_x_0f(x+_x)-f(x)/ _x, provided the limit exists

Student 19 then sends the novice to the applet and instructs them to:

Play around with the surfer and get a feel of how the slope varies for different sections of the
curve…Now back to the formula.

When students wrote about their mathematical understandings, their own deeply held
conceptions and misconceptions were highlighted. This concurs with the experience
reported by Bezuidenhout (1998) who also used computer animations but found that the
initially constructed schema can impede the development of more sophisticated
understandings of fundamental concepts.

Conclusions

The exercise reported in this study required students to verbalise their perception of the
key features of an animated representation of the concept of the derivative as the gradient
of a curve. This proved to be a successful task for prompting higher order thinking as it
assessed students’ ability to articulate their understanding of derivatives, applied in a new
context. The students’ written responses provided the teacher with valuable information on
which to base follow-up teaching.

The better students were able to use the animation to discuss the link from a function to
its derivative and vice versa. They could explain the representation of the tangent as a
surfboard, and provide illustrative examples. A second group of students was able to
correctly draw attention to some important features of the applet but gave incomplete
responses. On the other hand, despite the use of multiple representations throughout their
recent course, the study also showed that some students preferred algebra and had strongly
associated the concept of the derivative with an algebraic routine for polynomial functions.
Even though the task was to use a graphical representation to explain the concept, they
chose to focus on the algebra.

Encouraging students, undertaking a written task, to verbalise their understanding of
the mathematics represented by simple interactive computer applet, proved to be a valuable
way to elicit information on their own internal schema, understanding of concepts and any
significant biases or deficiencies.
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